INTRODUCING FCT SOLDER'S NEWEST INNOVATION:

AMP Micro

Ultra-Fine Feature No-Clean Lead-Free Solder Paste

SKYLER SCHULTZ
FORMULATION CHEMIST
FCT SOLDER

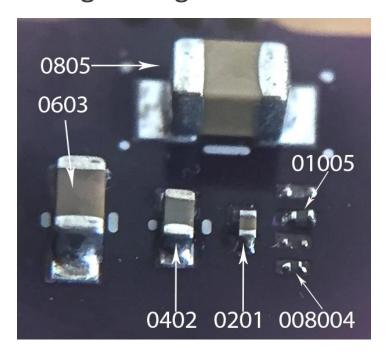
SSCHULTZ@FCTASSEMBLY.COM

Outline/Agenda

- Introduction
 - Overview of AMP Micro
 - Miniaturization of electronics & the need for Type 6 solder paste
 - Challenges of formulating Type 6 solder paste
- Discussion Topics
 - Experimental design to challenge the solder paste
- Results of Experiments
 - IPC Testing Results
 - Reflow data and photos
 - Tack Life Results
 - 8-hour Print & Pause/Stencil Life Data
 - Voiding Results
- Conclusions
- Q&A

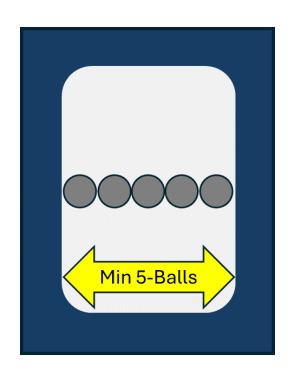
AMP Micro Overview

- No-clean flux
- Halide and halogen-free
- Compatible with industry standard lead-free alloys including SAC305 and SN100CV
- Excellent printability through ultra-fine apertures
- \diamond Air reflow compatible no nitrogen (N_2) reflow costs required with T6 solder powder
- * Complete coalescence in convection air reflow down to 4 mils (102 μm) aperture sizes
- Best in class voiding performance
- **♦** Long lasting stencil life ≥ 6 hours
- High tack that is stable for 72 hours ensuring component holding force over time



- Electronics are getting smaller finer powder sizes are necessary!
- Progressive miniaturization in packaging has driven the shift toward finer powders to support UHDI and semiconductor-level assembly.

Powder Type	Particle Size (μm)	Typical Application	Packaging Relevance
Type 3	25–45	Standard SMT	SOIC, QFP
Type 4	20–38	Fine-pitch SMT	BGA, CSP
Type 5	15–25	Ultra-fine pitch	PoP, micro-BGA
Type 6	5–15	Miniature apertures	SiP, wafer bumping
Type 7+	<11	Sub-100 µm pads	Flip chip, UHDI


Era	Packaging Type	Typical Component	Key Characteristics	Industry Impact
1970s- 1980s	Through-Hole (DIP, SIP)	14-pin ICs, axial resistors	Large lead spacing, manual assembly	Low density, high reliability
1980s- 1990s	Surface Mount Technology (SMT)	SOIC, PLCC, QFP	Reduced board space, automated reflow	Smaller boards, faster assembly
1990s- 2000s	BGA, CSP	BGA256, QFN	Area-array interconnects, smaller pitch	Increased I/O count, better performance
2000s- 2010s	PoP, SiP	Stacked memory + processor	3D integration, compact design	Higher density, smaller footprint
2010s- Present	Flip Chip, Wafer- Level Packaging	Micro-bump die attach	Ultra-fine pitch, semiconductor precision	UHDI, advanced integration

Printing through these small of apertures requires smaller powder sizes.

Component (Imperial):	Approx. Size (inches):	Approx. Size (mils):
008004	0.010 x 0.005	10 x 5
01005	0.016 x 0.008	16 x 8
0201	0.02 x 0.01	20 x 10
0402	0.04 x 0.02	40 x 20
0603	0.06 x 0.03	60 x 30
0805	0.08 x 0.05	80 x 50

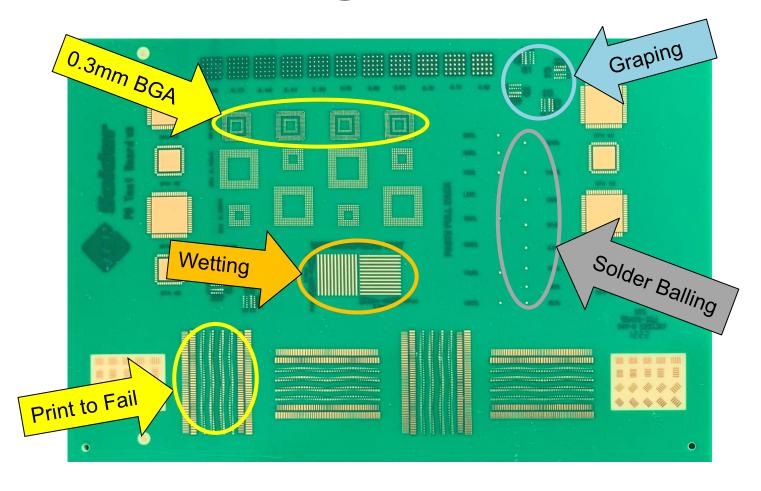
Solder powder size and the "5-ball" rule

IPC Type	Size (μm)	Size (mils)	Smallest Aperture 5-Ball Rule (mils)	Smallest Aperture Recommended (mils)
2	45 - 75	1.8 - 3.0	15.0	16 - 17
3	25 - 45	1.0 - 1.8	9.0	10 - 11
4	20 - 38	0.8 - 1.5	7.5	9 - 10
5	15 - 25	0.6 - 1.0	5.0	6 - 7
6	5 - 15	0.2 - 0.6	3.0	4 - 5
7	2 - 11	0.1 - 0.4	2.0	3 - 4

Challenges of formulating flux for Type 6 solder pastes:

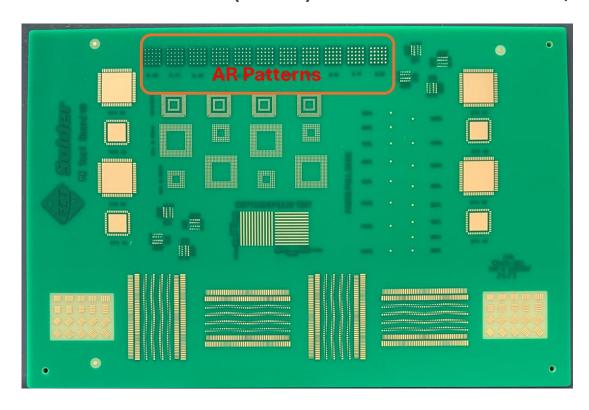
- High surface area of powder leading to higher oxide content
- Increased activity needed to remove oxide
- Oxidation barrier/flux shell
- Rheology tuned for application

Solder Powder Size (IPC Type)	Size Range of > 80% (μm)	Middle Surface Area of 1Kg (m²)	Amount of Surface Area Over T3
Type 3	25 - 45	22.9	-
Type 4	20 - 38	27.7	1.2x
Type 5	15 - 25	40.2	1.7x
Type 6	5 - 15	80.3	3.5x



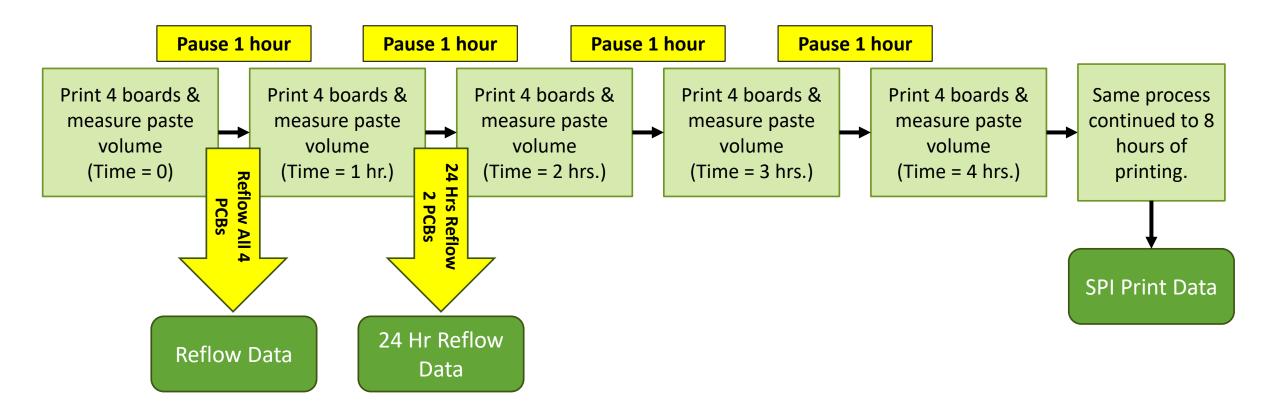
Experimental Design – Print & Reflow Parameters

Print Parameter	Value	
Print speed (mm/sec)	30 mm/sec	
Blade length (mm)	300 mm	
Print pressure (kg)	6.0 – 8.0 Kg	
Separation speed (mm/sec)	3 mm/sec	
Separation distance (mm)	2 mm	
Dwell Height / Blade Lift Height (mm)	15 mm	


Reflow Parameter	SAC305 Ramp to Spike (RTS)
Soak Time (150-200°C)	76 to 78 sec
Time Above Liquidus (>220°C)	57 to 59 sec
Peak Temperature	241 to 244°C
Time from 25°C to Peak	4.4 to 4.6 min

Experimental Design

Experimental Design – 8-hour print and pause test


50.8-micron (2 mil) laser cut FG stencil, SMD pads

Area Ratio*	Aperture Size (mils)	Theoretical Vol (mils³)	# Type 6 "Balls"	Aspect Ratio*
0.50	4.0	32.0	6.8	2.00
0.56	4.5	40.5	7.6	2.25
0.63	5.0	50.0	8.5	2.50
0.69	5.5	60.5	9.3	2.75
0.75	6.0	72.0	10.2	3.00
0.81	6.5	84.5	11.0	3.25
0.88	7.0	98.0	11.9	3.50
0.94	7.5	112.5	12.7	3.75
1.00	8.0	128.0	13.5	4.00

Experimental Design - Process

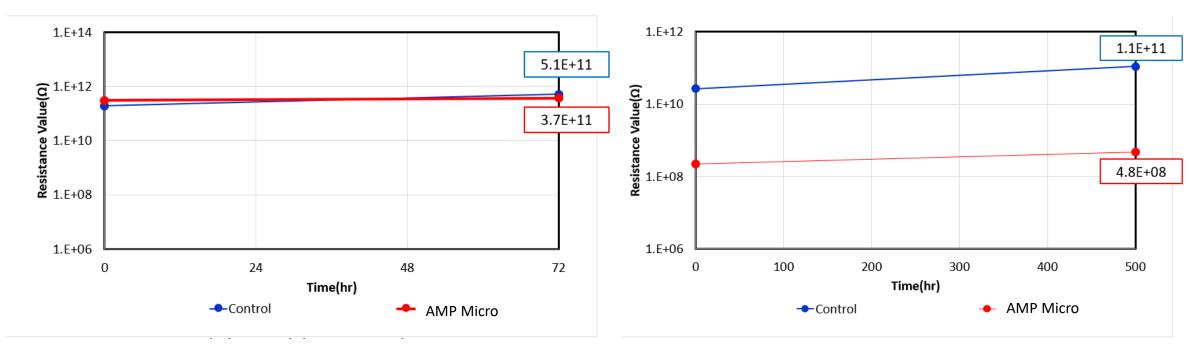
Stencil Life - 8 Hour Print & Pause

Experimental Design

IPC Tests including:

- IPC 2.4.34 Viscosity Brookfield
- IPC 2.3.32 Copper Mirror
- IPC 2.4.35 Slump frosted glass
- IPC 2.4.43 Solder balling frosted glass
- IPC 2.4.45 Wetting copper
- IPC 2.4.44 Tack force frosted glass
- IPC 2.6.3.7 & 2.6.14.1 Surface Insulation Resistance & Electrochemical Migration

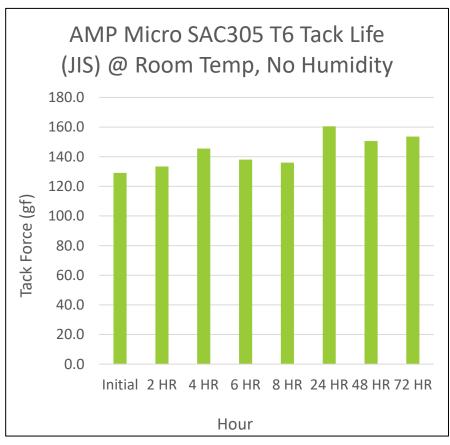
8-hour print and pause test (Stencil Life)

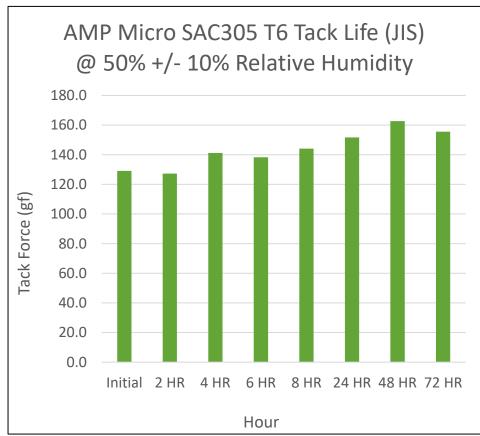

Reflow data under standard SAC305 RTS profile

IPC Testing Results

Viscosity Slump – Frosted Glass Copper Solder Balling – 0.1mm – **Wetting – Copper** Mirror **Frosted Glass** PASS @ Initial: **Preferred** PASS, no evidence of dewetting Brookfield: 750 - 1000 4hr @ RT: Kcps **Preferred** IOW -No copper breakthrough Malcom: 174.0 PaS 4hr @ (1740 Poise) 50% RH: **Preferred**

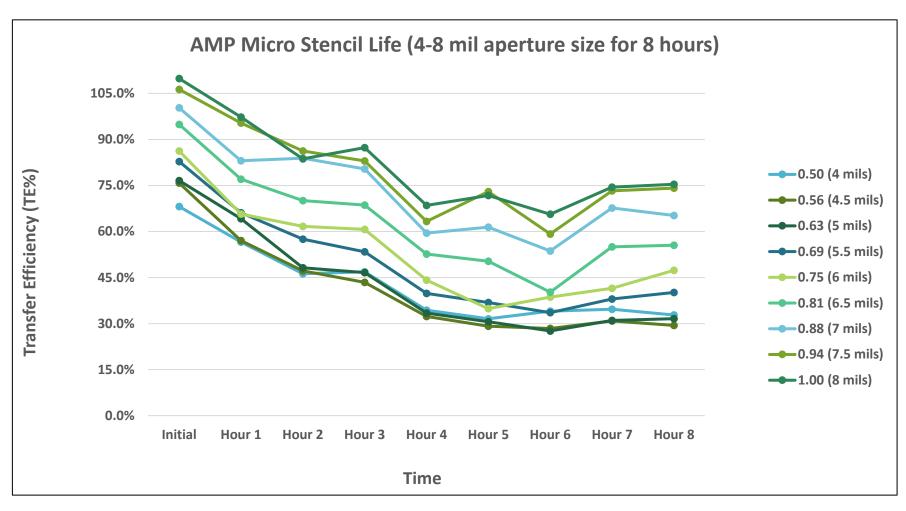
IPC SIR and ECM Testing Results


IPC-TM-650 2.6.3.7, 40°C, 90% RH, 168 Hours


IPC-TM-650 2.6.14.1, 65°C, 85% RH, 500 Hours

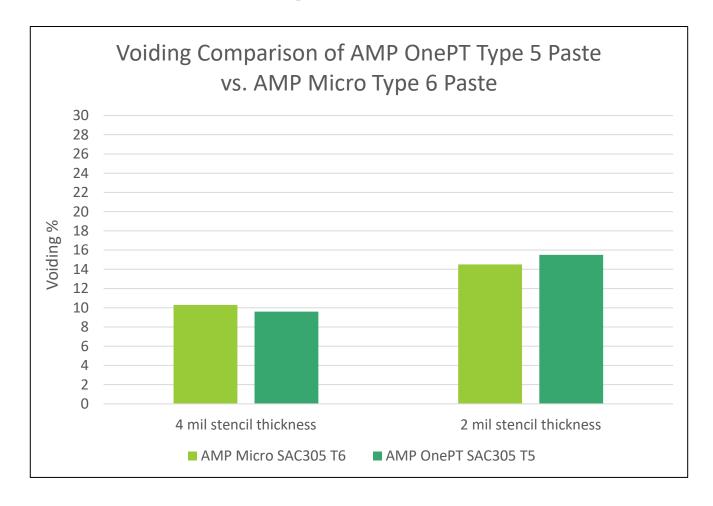
Passes SIR and ECM Testing Without Cleaning Flux Residue

Tack Life Results – ≥72 hours

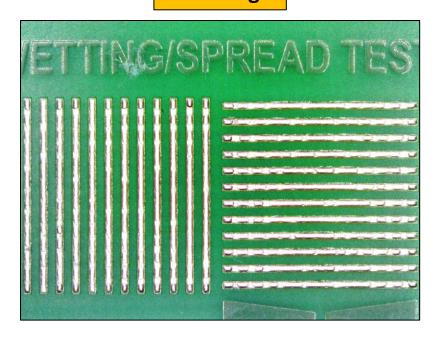


AMP Micro IPC Tack Force = 97 gf

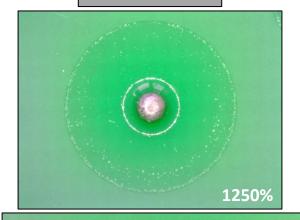
AMP OnePT IPC Tack
Force = 56 gf
Tack Life = ≥48 hours at
100-110 gf

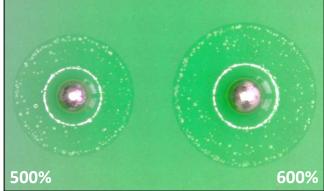

8-hour Stencil Life/Print and Pause Results

- No underside stencil cleaning.
- No fresh paste added during test.


AMP OnePT Stencil Life on 6-16 mil apertures is ≥8 hours with a ~% drop in volume fro Ars???

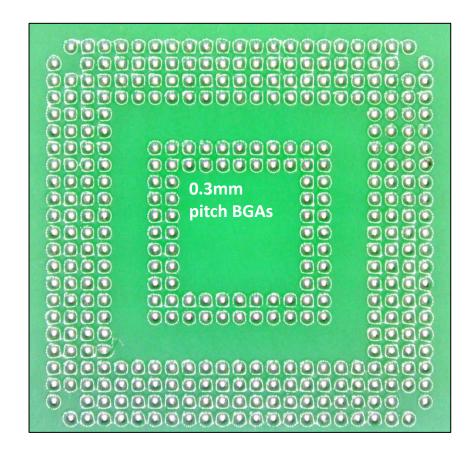
AMP Micro Voiding Results

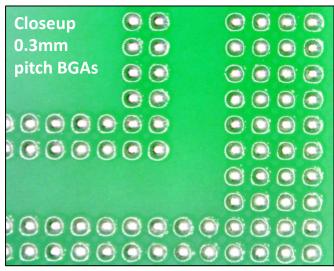


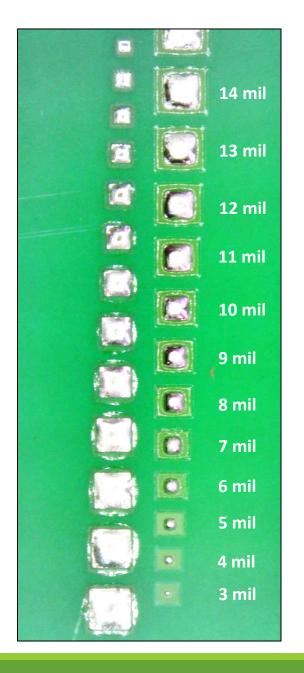

Convection Air Reflow Results

Wetting

Solder Balling




Graping



Convection Air Reflow Results

Conclusions

- AMP Micro is formulated for **advanced miniaturization**, supporting HDI and UHDI applications including SiP, PiP, flip chip, and semiconductor manufacturing.
- AMP Micro enables **convection air reflow**, eliminating the need for costly N₂ reflow environments.
- AMP Micro offers excellent printability through ultra-fine apertures needed for the industry's smallest packages including 008004 Imperial component sizes.
- * AMP Micro, like FCT's AMP OnePT paste, offers **best in class voiding** performance.
- AMP Micro maintains **high tack stability** for up to 72 hours, ensuring consistent holding force needed for ultra-fine components.

Thank You!

We appreciate your time and attention.

Questions or Comments?

SKYLER SCHULTZ

FORMULATION CHEMIST

FCT SOLDER

SSCHULTZ@FCTASSEMBLY.COM