

REIMAGINE POSSIBILITIES

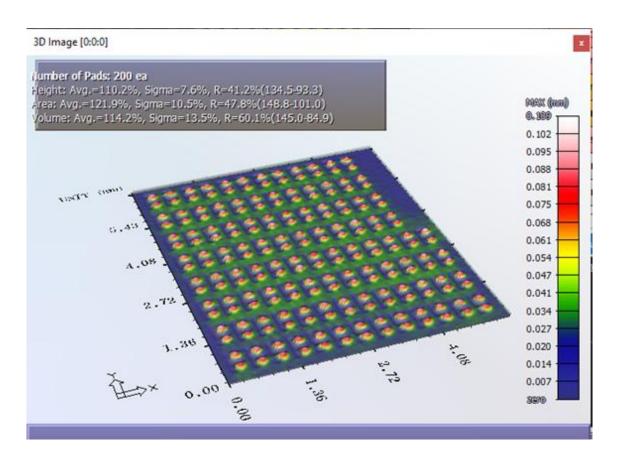
MARCH 15-20 MEETINGS + COURSES

MARCH 18-20

CONFERENCE + EXHIBITION ANAHEIM CONVENTION CENTER / CA

IPCAPEXEXPO.ORG #IPCAPEXEXPO

Optimization of Solder Paste Printing for Ultra-High-Density-Interconnect (UHDI) Applications


Mike ButlerTony LentzEdITW/EAEFCT AssemblyIT

Ed Nauss ITW/EAE Greg Smith BlueRing Stencils

IPC APEX EXPO 2025

Agenda

- Introduction
 - UHDI and HDI
 - Solder Powder Size
- Experimental Methodology
 - Process, Materials, Equipment
- Results & Discussion
 - 0201M Printing
 - 0.3mm BGA Printing
 - Comparison Same Aperture
- Conclusions & Recommendations
- Acknowledgments
- Q&A

Introduction

IPC APEX EXPO 2025

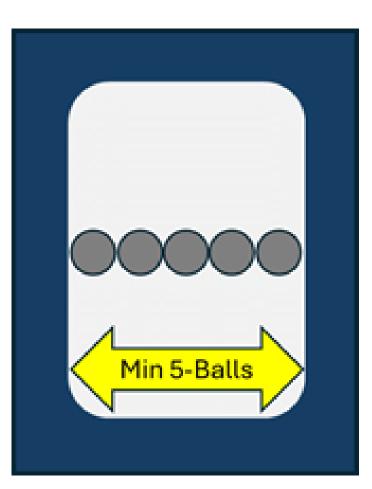
UHDI & HDI Electronics

- Standard PCB technology limited to pad & spaces of 75 μm
- HDI High-Density Interconnect
 - Pad, via & trace spacing specification reduced to 25 μm
 - Subtractive process (etching) 50 µm and/or mask defined pads 25 µm*
 - Up to 9X increase in density
 - Reduction in layer count and package size
 - *Mask defined pads may have issues of positional repeatability & print alignment
- UHDI Ultra High-Density Interconnect
 - Pad, via & trace spacing reduced to 12.5 μm
 - Additive process adding conductors directly on the dielectric
 - Up to a 36X increase in density
 - Buried, stacked, staggered & blind via interconnects to reduce layer count

75 micron

25 micron

12.5 micron

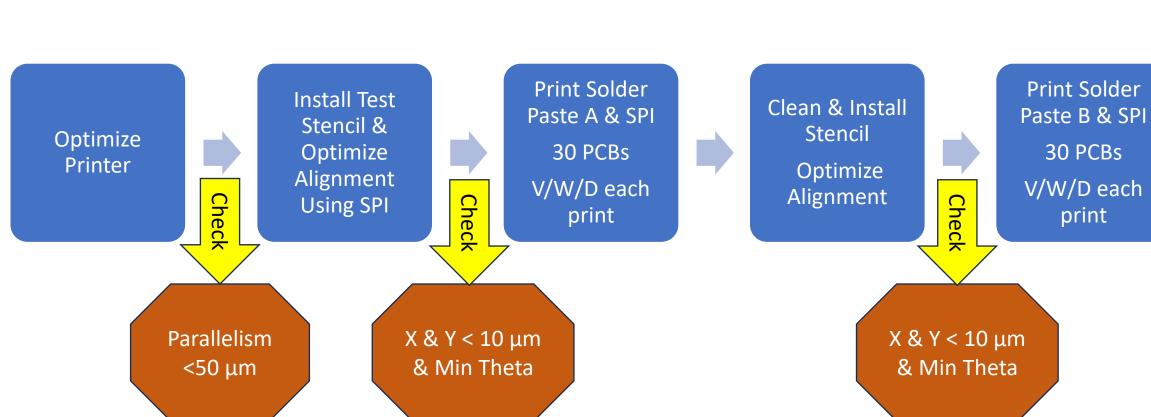

Solder Powder Size and UHDI


Solder Powder Size (IPC Type)	Size Range of > 80% (µm)	Middle Surface Area of 1Kg (m ²)	Amount of Surface Area Over T3	Relative Powder Cost
Type 3	25 - 45	22.9	-	1
Type 4	20 - 38	27.7	1.2x	1
Type 5	15 - 25	40.2	1.7x	1.1
Type 6	5 - 15	80.3	3.5x	4

Solder Powder Size and UHDI

Туре	Size (µm)	Size (mils)	Smallest Aperture 5-Ball Rule (mils)	Smallest Aperture Recommended (mils)
2	45 - 75	1.8 - 3.0	15.0	16 - 17
3	25 - 45	1.0 - 1.8	9.0	10 - 11
4	20 - 38	0.8 - 1.5	7.5	9 - 10
5	15 - 25	0.6 - 1.0	5.0	6 - 7
6	5 - 15	0.2 - 0.6	3.0	4 - 5
7	2 - 11	0.1 - 0.4	2.0	3 - 4

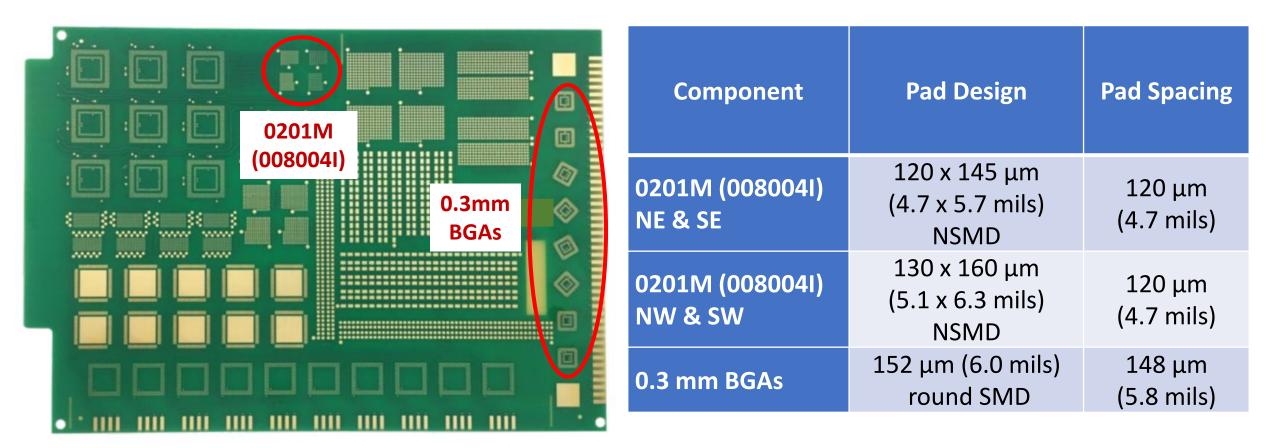
stion


SISBUROOHX

Experimental Methodology

Experiment

observation


IPC APEX EXPO 2025

Test Process

IPC APEX EXPO 2025

Test Stencil

0201M

NE

0201M

SE

0.3mm BGA

0201M

NW

0201M

SW

Component	Aperture Size	Area Ratio	Narrowest Space Between Apertures
0201M (008004I) NE	152 x 152 μm (6.0 x 6.0 mils) RSQ	0.75	147 µm (5.8 mils)
0201M (008004I) NW	180 μm wide x 150 μm tall (7.1 x 5.9 mils) radiused	0.81	120 µm (4.7 mils)
0201M (008004I) SE	160 μm wide x 130 μm tall (6.3 x 5.1 mils) radiused	0.70	170 µm (6.7 mils)
0201M (008004I) SW	150 μm wide x 180 μm tall (5.9 x 7.1 mils) radiused	0.81	120 µm (4.7 mils)
0.3 mm BGAs	152 x 152 μm (6.0 x 6.0 mils) RSQ	0.75	147 μm (5.8 mils)

Stencil: FG, 50 µm (2.0 mil), Ceramic Nano-Coating

Printer Equipment & Parameters

Align Calib Calib Optic Toolin Blade	tions print accuracy: 17 microns @ 6 ment repeatability: ±11 micro rated and verified pns: Edge PCB clamping, Paste ng: Block PCB support. es: 220 mm (8") stainless ste k angle	rons (
Parameter	Value (Solder Paste A)		
Squeegee force	6.8 kg		
Print speed	38.1 mm/sec		
Blade gap	-2.0 mm		
Post print lift height	12.5 mm		

- gma, CpK ≥ 2.0
- @ 6 sigma, CpK ≥2.0
- ight monitor
- blades with a 55-degree

Parameter	Value (Solder Paste A)	Value (Solder Paste B)	
Squeegee force	6.8 kg	7.7 kg	
Print speed	38.1 mm/sec	38.1 mm/sec	
Blade gap	-2.0 mm	-2.0 mm	
Post print lift height	12.5 mm	5.1 mm	
Post print lift speed	80.0 mm/sec	80.0 mm/sec	
Separation distance	2.54 mm	2.54 mm	
Separation speed	1.27 mm/sec	1.27 mm/sec	

SPI Equipment & Specifications

Specifications

- X Y Resolution (μm): 7x7
- Height, Area, and Volume Repeatability
 - 3 Sigma < 1 μm, on a certified target
- Height Accuracy: 2 μm, on a certified target

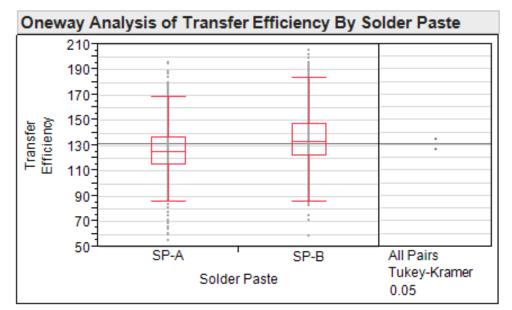
Transfer Efficiency (TE%) & Coefficient of Variation (CV%)

TE% = 100% x [(Measured Volume) / (Aperture Volume)]

CV% = 100% x [(Standard Dev TE%) / (Mean TE%)]

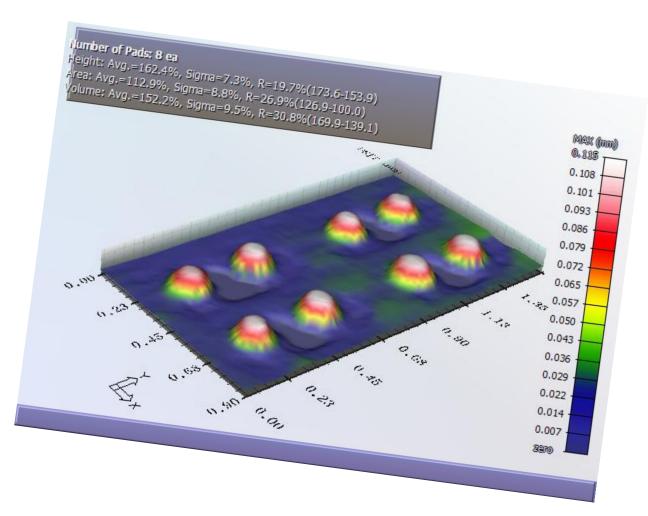
CV < 10% Capable Process CV 10-15% Marginal Process CV > 15% Not-Capable Process

Results & Discussion



IPC APEX EXPO 2025

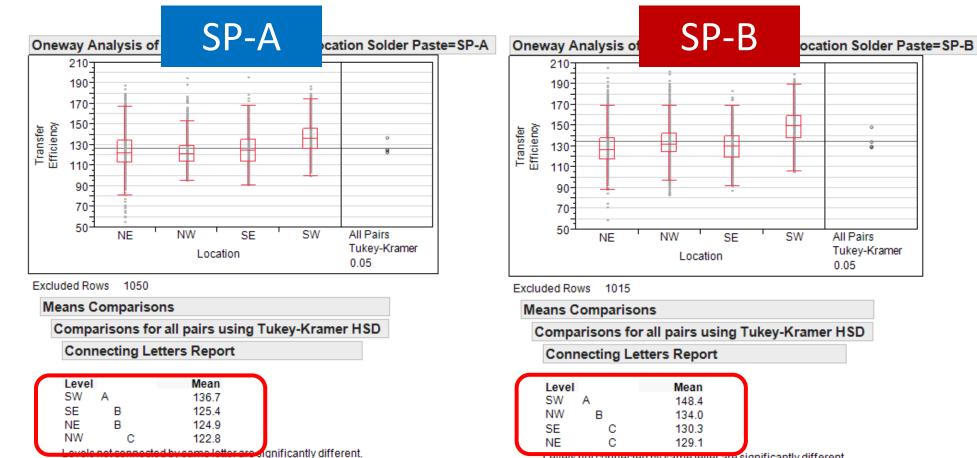
0201M Print Data by Solder Paste



Excluded Rows 2065

Means Comparisons

Comparisons for all pairs using Tukey-Kramer HSD


Connecting Letters Report				
Level		Mean		
SP-B /	Α	135.5		
SP-A	в	127.5		
Levels n	otconne	cted by same letter are significantly differe	nt.	

SP-B Printed with Higher TE%

0201M Print Data by Location

Levers not connected by same retter are significantly different.

SW Location Printed with Higher TE%

0201M Distribution by Solder Paste

2

-

ゕ

:

.

205.89

186.849

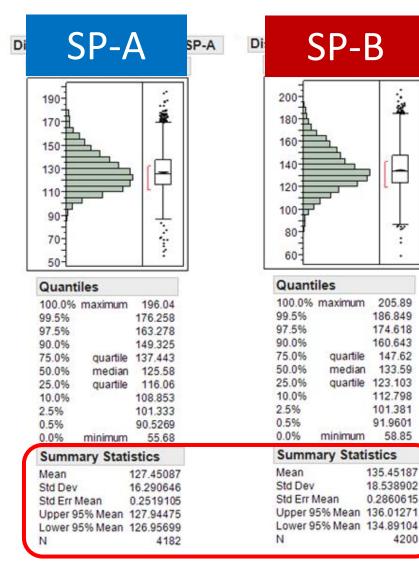
174,618

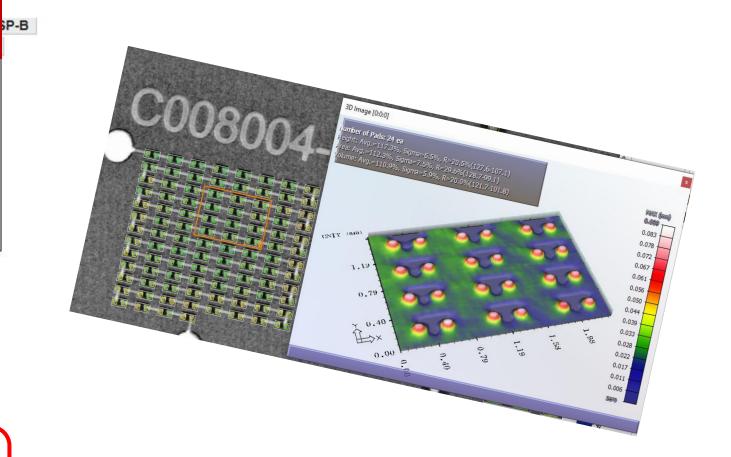
160.643

147.62

112,798

101.381

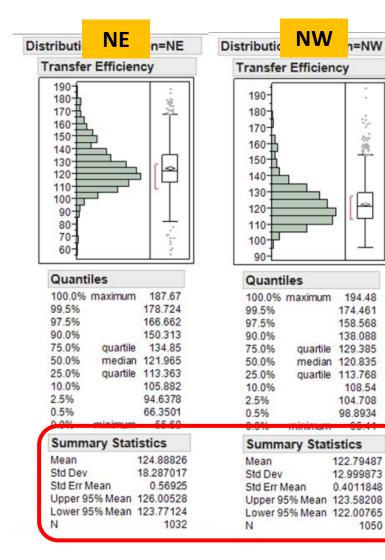

91,9601

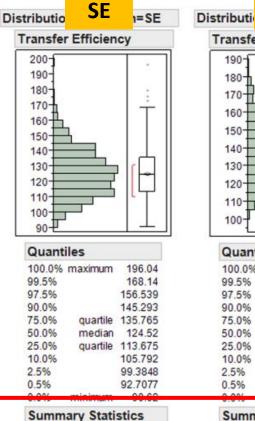

135.45187

18.538902

0.2860615

4200





SP-A has Lowest Mean & STDev

0201M Distribution by Location: SP-A

125.357

126.292

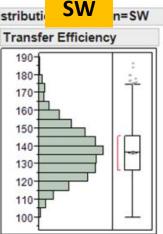
124,422

1050

15,440324

0.4764987

Mean


N

Std Dev

Std Err Mean

Upper 95% Mean

Lower 95% Mean

Quantiles 100.0% maximum 186.73 99.5% 177.62 97.5% 169.06 90.0% 155.346 quartile 145.733 75.0% 50.0% 136.28 median 25.0% quartile 126.343 10.0% 119.051 2.5% 111.814 0.5% 105.843 **Summary Statistics**

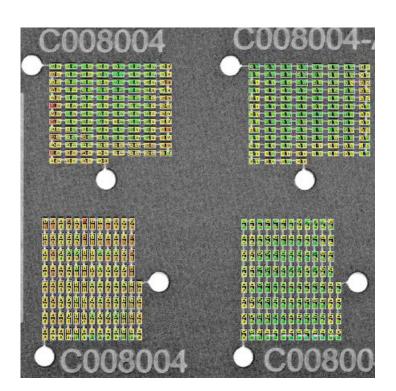
Upper 95% Mean 137,5825

Lower 95% Mean 135.85637

136.71944

14.252453

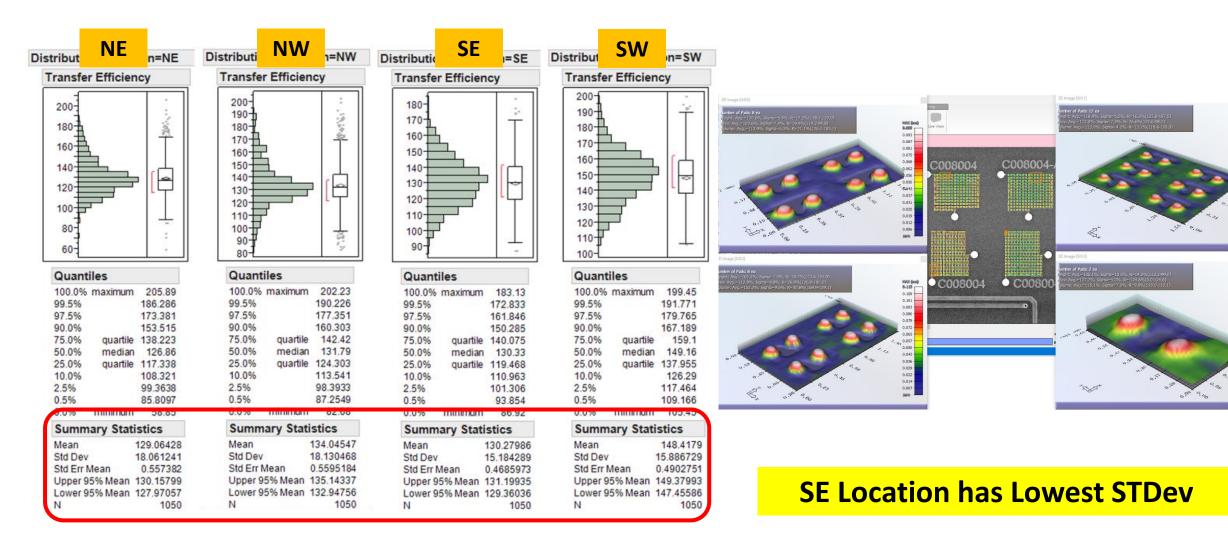
0.4398402


1050

Mean

N

Std Dev


Std Err Mean

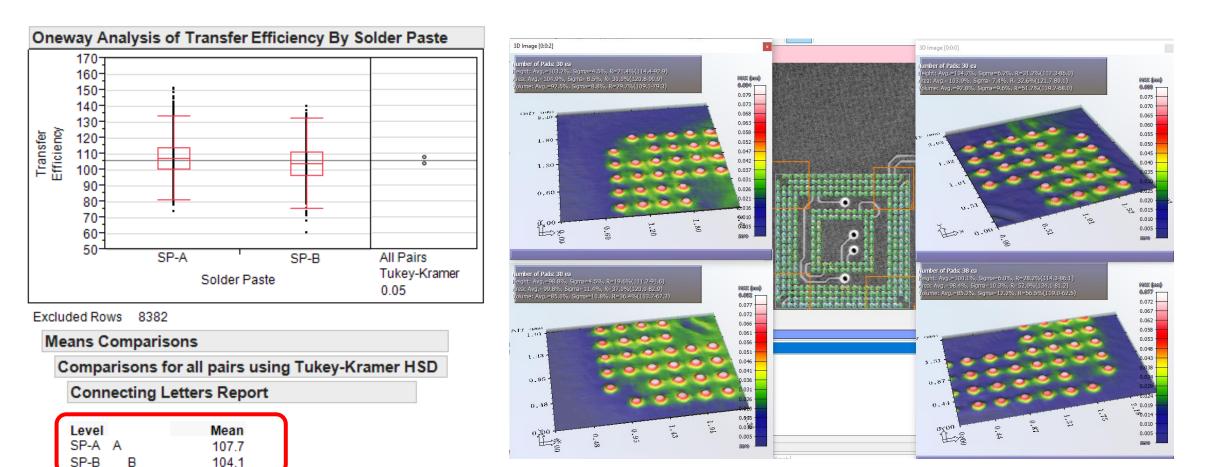
NW Location has Lowest Mean & STDev

0201M Distribution by Location: SP-B


0201M CV by Location

0201M Location	CV% for Solder Paste A	CV% for Solder Paste B
NE	14.6	14.0
NW	10.6	13.5
SE	12.3	11.6
SW	10.4	10.7

SW Location Gave Lowest CV%

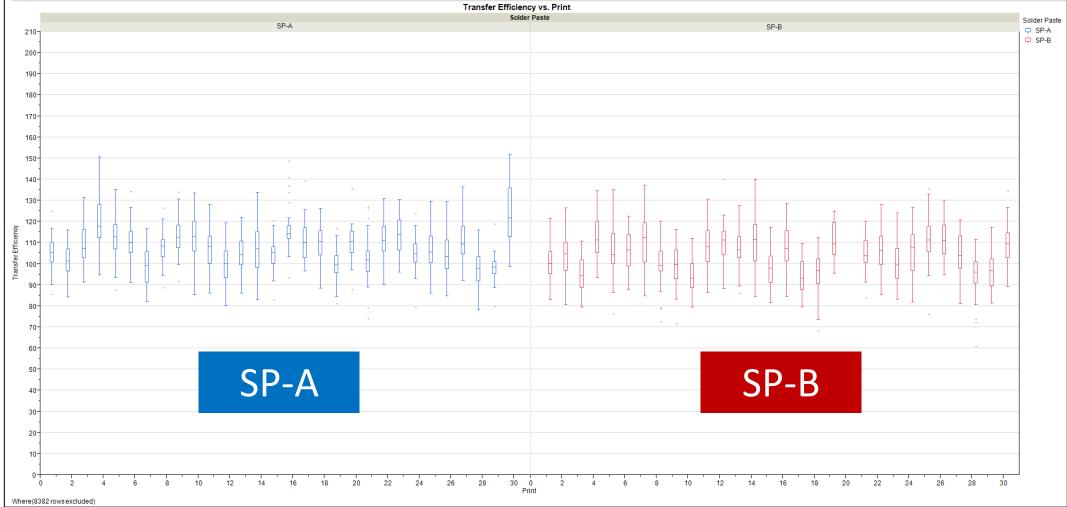

0201M TE% by Print

SP-A Less Variation from Print to Print

0.3mm BGA Print Data by Solder Paste

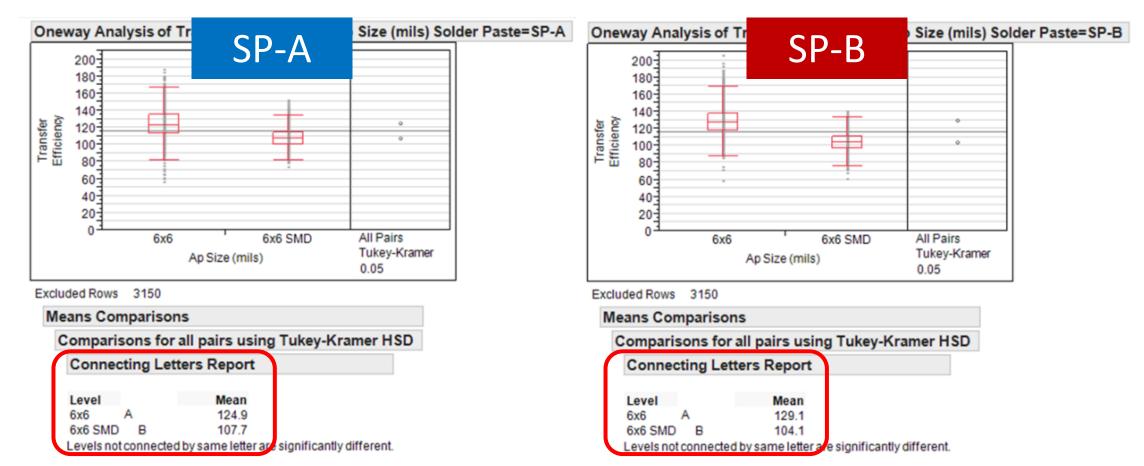
Levels not connected by same letter are significantly different.

SP-A Printed with Higher TE%


0.3mm BGA Distribution by Solder Paste

	Dis SP-B
Quantiles	Quantiles
100.0% maximum 151.65 99.5% 143.888 97.5% 133.6 90.0% 121.446 75.0% quartile 114.075 50.0% 50.0% median 100.543 10.0% 94.397 2.5% 86.535 0.5% 0.5% 79.7971 0.0% minimum	100.0% maximum 139.87 99.5% 135.06 97.5% 128.336 90.0% 119.24 75.0% quartile 111.36 50.0% 50.0% median 100.0% 89.27 2.5% 81.608 0.5% 72.448 0.0% minimum
Summary Statistics	Summary Statistics
Mean 107.71895 Std Dev 11.077485 Std Err Mean 0.3418586 Upper 95% Mean 108.38976 Lower 95% Mean 107.04815 N 1050	Mean 104.13631 Std Dev 11.555264 Std Err Mean 0.3626994 Upper 95% Mean 104.84803 Lower 95% Mean 103.42458 N 1015

SP-A has Higher Mean & Lower STDev


0.3mm BGA TE% by Print

0.3mm BGA Less Variation Print to Print than 0201M

0201M NE & 0.3mm BGA Print Data – (6x6 mil Ap.) Cu vs Solder Mask Defined Pads

Both Pastes Showed Higher TE% in the Cu Defined Pads

0201M NE & 0.3mm BGA Print Data – (6x6 mil Ap.) Cu vs Solder Mask Defined Pads

Location	Mean TE% for Solder Paste A	CV% for Solder Paste A	Mean TE% for Solder Paste B	CV% for Solder Paste B
0201M NE 120 x 145 μm (4.7 x 5.7 mils) Cu Defined	124.9	14.6	129.1	14.0
0.3mm BGA 152 μm (6.0 mils) Round SM Defined	107.7	10.3	104.1	11.1

Overall Similar Performance for Both Solder Pastes

Conclusions & Recommendations

Conclusions

0201M Printing

- Solder paste B TE% > solder paste A.
- Solder paste A CV < solder paste B, and both are moderately capable.</p>
- SW location: highest TE% and lowest CVs for both solder pastes.
 - Rectangular aperture long edge parallel to the print direction.
- NE location: lowest TE% and highest CVs for both solder pastes.
 - "Squircle" aperture
- 30 prints over 1 hour showed good print consistency & repeatability for both solder pastes.
- No bridging was observed.

Conclusions

0.3mm BGA Printing

- Solder paste A gave slightly higher TE% & lower CV than solder paste B.
 - Both CVs were at the low end of the marginal CV range.
- 30 print testing: less variation than the 0201Ms.
- No bridging was observed.

Comparing Both Components with the Same Stencil Design

- 0201M NE location TE% & CVs >> 0.3mm BGAs for both solder pastes.
- Copper defined 0201M rectangular pads gave higher TE% but less consistency than the solder mask defined 0.3mm BGA pads.

Recommendations for HDI & UHDI Printing

- Optimize the printer parallelism and stencil to PCB registration.
- Use a No-clean Pb-free solder paste that is designed for Type 6 or 7 printing.
- Use a fine-grain, laser cut stencil with ceramic nano-coating.
- Orient rectangular pads with the long edge parallel to the print direction.
- Use solder-mask defined pads (where possible) to reduce print variation.

Acknowledgements

- We give thanks to ITW/EAE for the use of the applications lab in Milford, MA.
- We also thank BlueRing Stencils who designed & provided the stencil.

Thank you!

Mike ButlerTony LentzITW/EAEFCT AssemblyEd NaussGreg SmithITW/EAEBlueRing Stencils

