

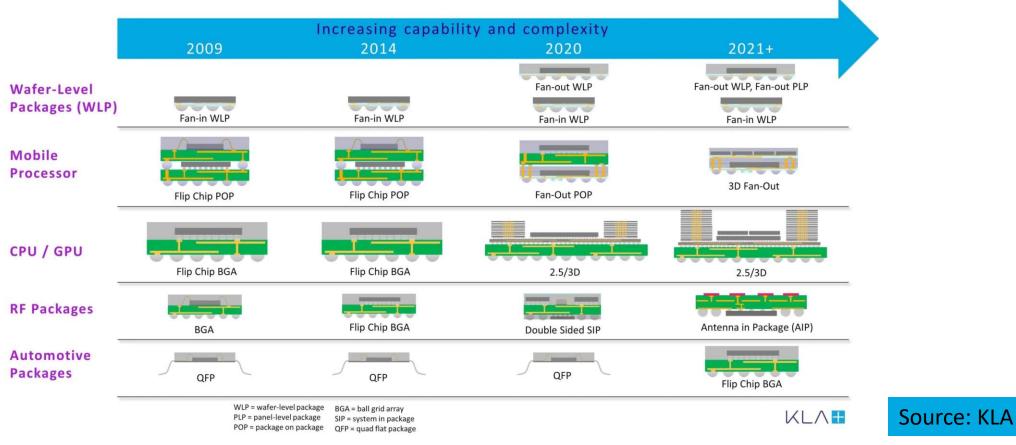
MEETING THE CHALLENGES OF ULTRA-FINE FEATURE PRINTING AND REFLOW THROUGH OPTIMIZATION OF PB-FREE SOLDER PASTE

Tony Lentz

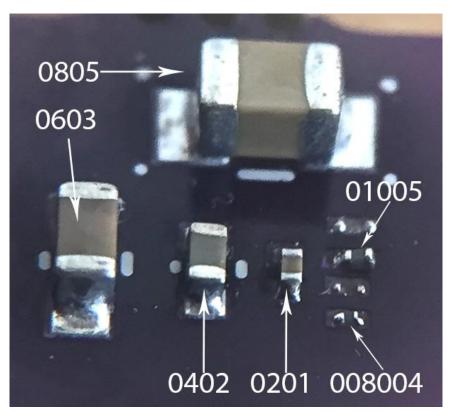
FCT Solder

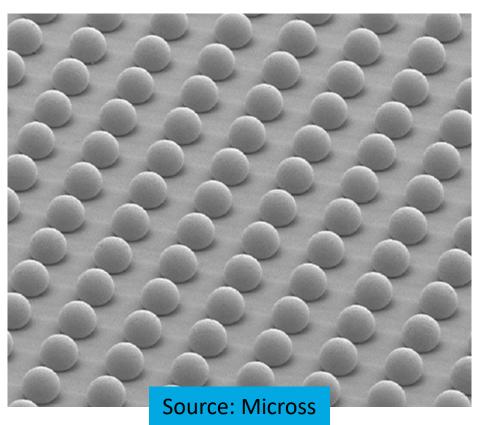
tlentz@fctassembly.com

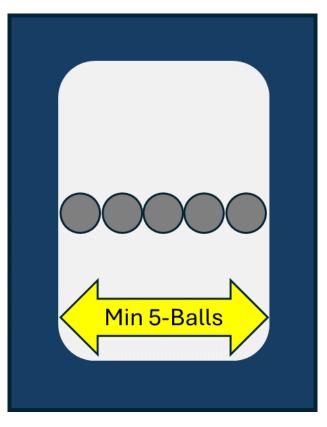
970-566-0360 (mobile)


©FCT ASSEMBLY PRESENTED AT SMTA INTERNATIONAL 2024

Outline/Agenda


- Introduction
 - Miniaturization of electronics & the need for Type 6 solder pastes
 - Challenges of Type 6 solder pastes
- Discussion Topics
 - Experimental design to challenge the solder pastes
- Results of Experiments
 - Print and pause data over time
 - Reflow data in 3 conditions
 - Voiding
 - Aging, tack force, & viscosity
- Conclusions
- Q & A


•Electronics are getting smaller: Flip chip, PoP, SiP



•Printing through 50-100 µm apertures requires smaller powder sizes

•Solder powder size and the "5-ball" rule

IPC Type	Size (µm)	Size (mils)	Smallest Aperture 5-Ball Rule (mils)	Smallest Aperture Recommended (mils)
2	45 - 75	1.8 - 3.0	15.0	16 - 17
3	25 - 45	1.0 - 1.8	9.0	10 - 11
4	20 - 38	0.8 - 1.5	7.5	9 - 10
5	15 - 25	0.6 - 1.0	5.0	6 - 7
6	5 - 15	0.2 - 0.6	3.0	4 - 5
7	2 - 11	0.1 - 0.4	2.0	3 - 4

•Challenges of Type 6 solder pastes

- High surface area
- Increased activity
- Oxidation barrier
- Rheology tuned for application

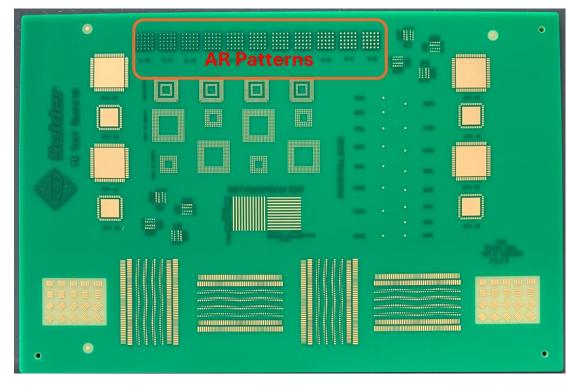
Solder Powder Size (IPC Type)	Size Range of > 80% (µm)	Middle Surface Area of 1Kg (m ²)	Amount of Surface Area Over T3
Type 3	25 - 45	22.9	-
Type 4	20 - 38	27.7	1.2x
Type 5	15 - 25	40.2	1.7x
Type 6	5 - 15	80.3	3.5x

•Relative cost of solder powders

- Significant cost jump from T5 to T6
- Can the application allow for T5??

Туре	Relative Powder Cost
3	1
4	1
5	1.1
6	4

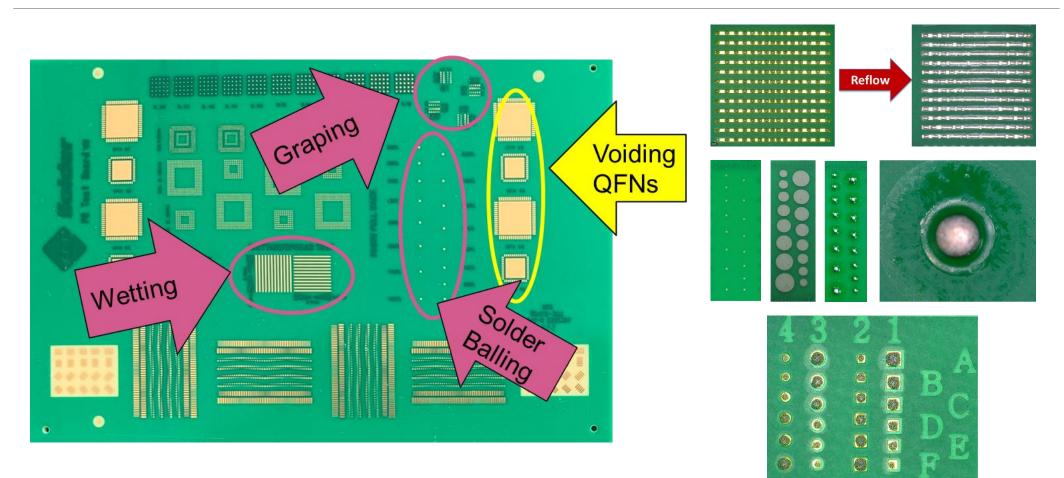
Experimental Design – Solder Pastes


Solder Paste	Flux Class (J-STD-004)	
NC New	ROLO	All made with SAC3
NC New 2	ROLO	Type 6 (5-15 μm)
NC Old	ROLO	solder powder
WS New	ORH1	
WS Old	ORH1	

Experimental Design – PR Test Board

•75 micron (3 mil) laser cut FG stencil

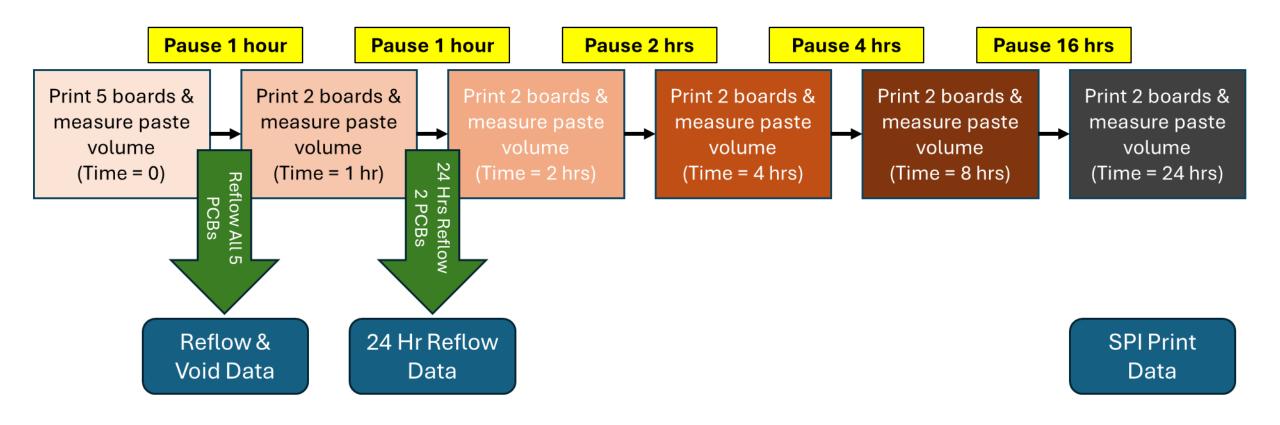
•SMD pads



Area Ratio*	Aperture Size (mils)	Theoretical Vol (mils ³)	# Type 6 "Balls"	Aspect Ratio*
0.30	3.40	32.1	5.7	1.13
0.35	3.96	44.5	6.6	1.32
0.40	4.54	59.3	7.6	1.51
0.45	5.12	76.0	8.5	1.71
0.50	5.70	94.9	9.5	1.90
0.55	6.29	116.1	10.5	2.10
0.60	6.88	139.4	11.5	2.29
0.65	7.47	164.8	12.5	2.49
0.70	8.06	192.3	13.4	2.69
0.75	8.65	221.9	14.4	2.88
0.80	9.25	254.1	15.4	3.08

©FCT ASSEMBLY PRESENTED AT SMTA INTERNATIONAL 2024

Experimental Design – PR Test Board

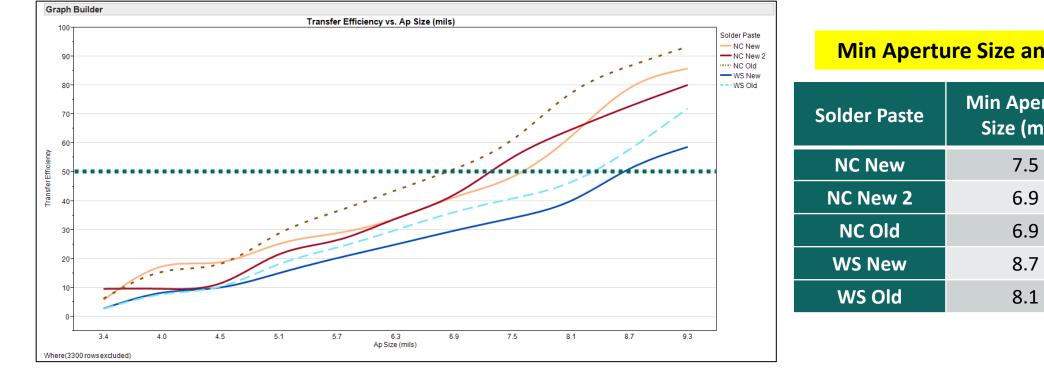


Experimental Design – Print & Reflow Parameters

Print Parameter	Value	Reflow Parameter	SAC305 Ramp	SAC305 Long Time Above Liquid (LTAL)	
Print speed (mm/sec)	30 mm/sec		to Spike (RTS)		
Blade length (mm)	300 mm	Soak Time (150-200°C)	76 to 78 sec	70 to 78 sec	
Print pressure (kg)	5.0 – 8.0 Kg	Time Above Liquidus (>220°C)	57 to 59 sec	134 to 138 sec	
Separation speed (mm/sec)	3 mm/sec	Peak Temperature	241 to 244°C	247 to 250°C	
Separation distance (mm)	2 mm	Time from 25°C to Peak	4.4 to 4.6 min	5.6 to 5.8 min	

Experimental Design - Process

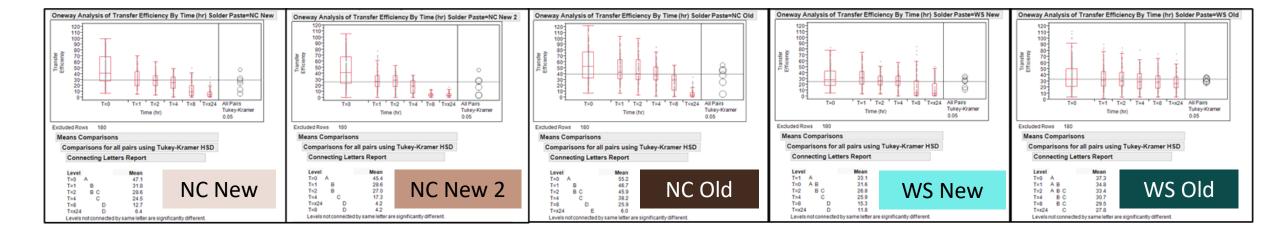
•24 Hour Print & Pause



Experimental Design – Other Tests

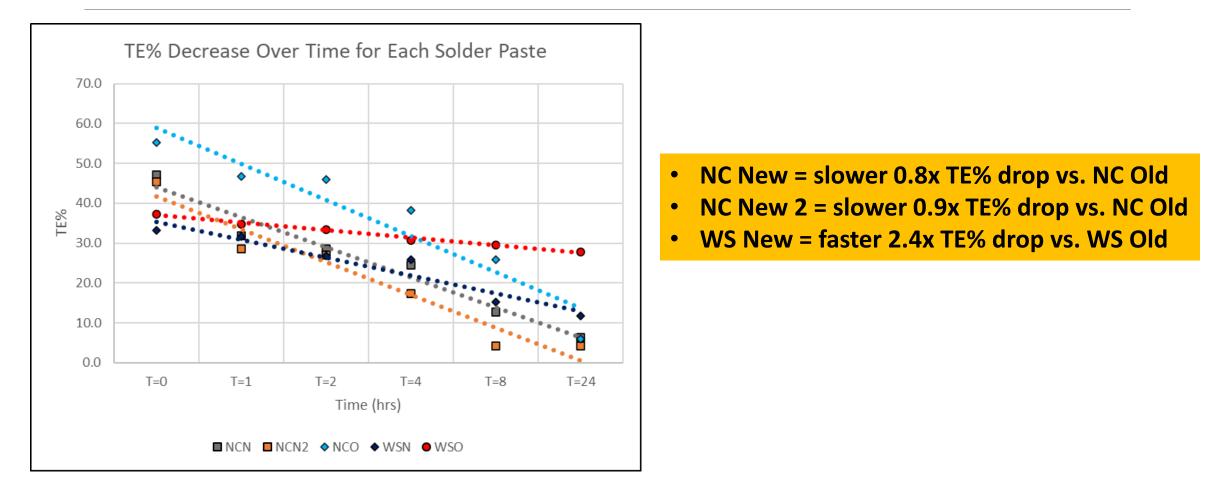
- •Reflow 5 PCBs in the LTAL profile
- •Tack force initial & after 1, 2 & 3 days
 - 21-22°C (70-72°F) & 48-54% RH
- •Viscosity initial
- Tack force & viscosity after heat aging
 - 34-36°C (93-97°F) for 3 days

Results – Initial TE%, All ARs

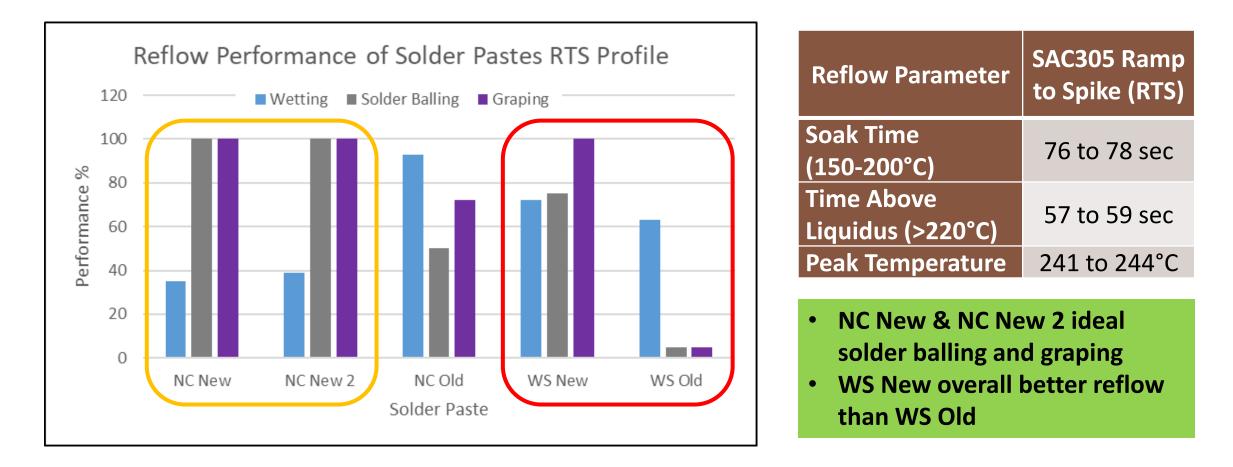


Min Aperture Size and AR for > 50% TE

Solder Paste	Min Aperture Size (mils)	Min Area Ratio
NC New	7.5	0.65
NC New 2	6.9	0.60
NC Old	6.9	0.60
WS New	8.7	0.75
WS Old	8.1	0.70

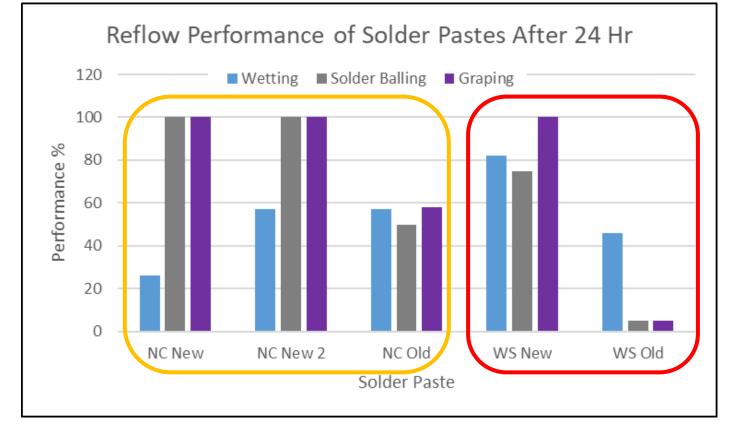

Results – Print & Pause, ARs > 0.35

All TE% Dropped Over 24 Hrs



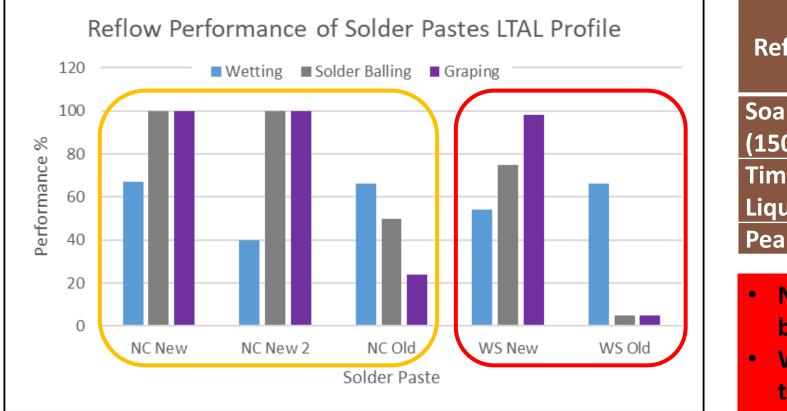
Results – Print & Pause, ARs > 0.35

Results – Reflow Ramp to Spike (RTS)



Results – Wet, Solder Ball, Graping - RTS

	NC New	NC New 2	NC Old	WS New	WS Old
Wet					
Solder Ball				• •	
Grape	1234 ABDIII	1234 BDF	1234 ABE	AB CD EF	AB CD B B B B B B B B B B B B B B B B B B


Results – Reflow After 24 Hrs in Air - RTS

- NC New & NC New 2 overall better reflow than NC Old
- WS New overall better reflow than WS Old
- Air exposure improved NC New 2 reflow

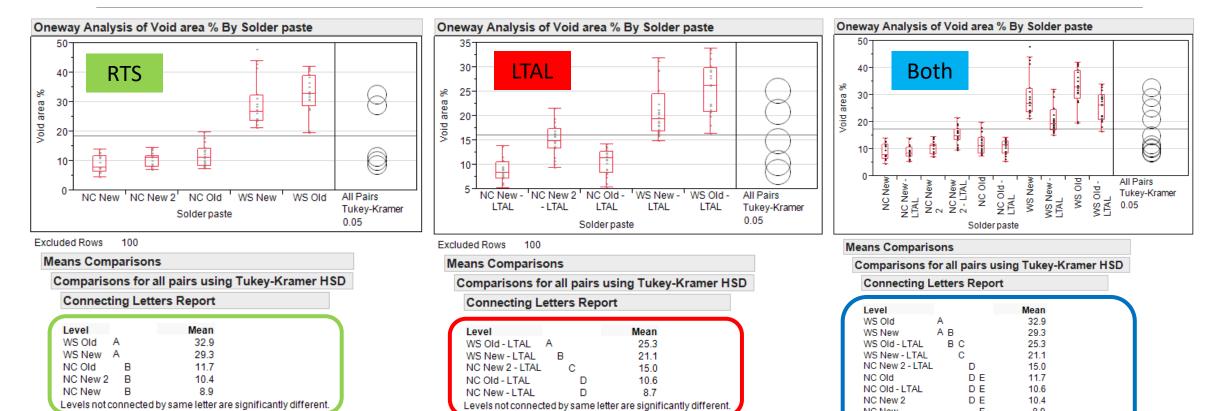
Results – Reflow Long Time Above Liquid (LTAL)

Reflow Parameter	SAC305 Long Time Above Liquid (LTAL)
Soak Time (150-200°C)	70 to 78 sec
Time Above Liquidus (>220°C)	134 to 138 sec
Peak Temperature	247 to 250°C

- NC New & NC New 2 overall better reflow than NC Old
- WS New overall better reflow than WS Old

8.9

8.7


F

F Levels not connected by same letter are significantly different

NC New

NC New - LTAL

Results – Voiding by Profile

Results – Tack Force Over 3 Days

Results – Viscosity & Heat Aging

	Solder Paste	Viscosity Initial (Kcps)	Viscosity After Heat Aging (Kcps)	Viscosity Increase (%)
	NC New	1030	Not measurable	N/A
	NC New 2	640	1001	56%
Ń	NC Old	430	487	13%
	WS New	120	154	28%
U	WS Old	390	510	31%

•	NC	New	unstab	le	in	heat
---	----	-----	--------	----	----	------

- NC New 2 some increase
- All others are stable

Results – Tack Force & Heat Aging

Solder Paste	Tack Force (gf)	Tack Force After Heat Aging (gf)	Tack Force Change (%)
NC New	202	104	48% decrease
NC New 2	145	173	19% increase
NC Old	135	134	1% decrease
WS New	136	132	3% decrease
WS Old	113	138	22% increase

NC New unstable in heat
All others are stable –

All others are stable – similar to Viscosity

Conclusions

•Print initial

- NC New 2 >50% TE at 0.60 AR (175 μm = 6.9 mils)
- WS New >50% TE to 0.75 AR (221 μm = 8.7 mils)
- Printable down to 0.50 AR (145 μm = 5.7 mils) with >30% TE

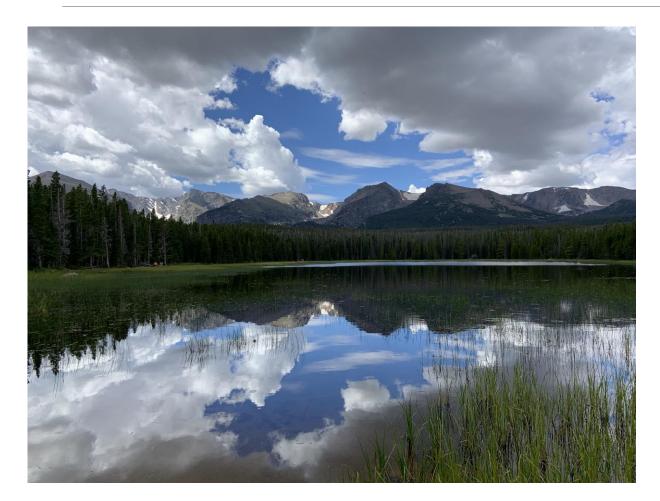
•Print and pause

- NC New 2 improved print and pause over NC Old
- WS New worse print and pause over WS Old

Reflow

- NC New 2 & WS New much improved reflow over NC Old & WS Old in both profiles
- Air Exposure (24 hours) improved NC New 2 reflow

Conclusions (cont.)


•Voiding

NC New 2 & WS New improved voiding over NC Old & WS Old

- Reflow profile can be used to minimize voiding
- •Tack force
 - NC New 2 & WS New had stable tack force over time
- •Heat aging
 - NC New 2 had some increase in viscosity & tack
 - WS New had slightly increased viscosity & stable tack
- •The new solder pastes are capable for Type 6 solder powder
 - Further optimization is ongoing

Thank You!

Tony Lentz FCT Solder <u>tlentz@fctassembly.com</u> 970-566-0360 (mobile)