

Creation of a Novel Pb-Free Water-Soluble Solder Paste that Improves Reliability Through Low Voiding and Ease of Washability

Tony Lentz tlentz@fctassembly.com mbix

Mike Bixenman mbixenman@magnalytix.com

© 2022 FCT Solder & © 2022 Magnalytix Presented at SMTA International 2022

Outline/Agenda

- Introduction
 - Reliability Concerns
 - □ Water Soluble Pb-Free Solder Paste
- Experimental Setup
- Results
- Conclusions & Acknowledgements
- **Q** & A

INTRODUCTION

Introduction - Reliability Concerns

Voiding in solder joints and un-washed flux residues pose reliability risks.

Introduction - Water Soluble Solder Paste

- Highly active (ionic species)
- Tend to absorb moisture
- Typically high in voiding

Introduction - Water Soluble Solder Paste

- Residues are corrosive and conductive
- Hard to remove under low-standoff components
- Can lead to dendritic growth

Need a new water soluble solder paste

- Low voiding
- Easy to wash
- High reliability

EXPERIMENTAL SETUP

Experimental Setup

Two experiments for new WS solder paste □ General solder paste performance Compared to the current technology Cleaning and reliability of flux residues Cleaning in DI water and engineered chemistry SIR testing under low-standoff components

PR Board V2 & General Paste Performance

- Tack force change over time
- Moisture absorption
- Stencil life over 8 hr print and pause
- Wetting on OSP and ENIG
- Voiding in QFN thermal pads
 - □ Linear-RTS and Soak-RSS profiles

IPC B-52 Legacy 2

<u>4 Quadrants</u>

QFN-48 (4x): 0.5 mm pitch

Standoff = 20-40 μm

BGA-244 with center lug: 1.0 mm pitch

Standoff = 80-120 μm

QFP-160: 0.65 mm pitch with an SIR Comb

- Detects wash fluid entrapment
- **Standoff = 30-40 μm**

Passive capacitors (10x each): 0805, 0603, 0402, & 0201 Imperial sizes

Standoff = <50 μm

IPC B-52 Legacy 2 Measures

- Cleanliness under low standoff components
- SIR values from 4 quadrants

SIR Requirements

Test Variables

- Two solder pastes
 - □ WS#1 = Legacy product
 - □ WS#2 = New product
- Two reflow profiles
 - □ Ramp-to-spike (RTS)
 - Ramp-soak-spike (RSS)
- Two cleaning methods
 - □ Inline with DI water
 - □ Inline with Engineered aq. chemistry

Test Matrix

VI	alli	K						
Test #	Test Board	Solder Paste #1	Solder Paste #2	Solder Profile Ramp to Spike	Solder Profile Soak Profile	Inline - DI Water	Inline - Eng. Aq.	SIR [40°C/90% RH/ 5V / 168- Hours]
		WS #1		x		No-Clean	No-Clean	х
1	MGX B52 Legacy 2	WS #1		x		x		х
2	MGX B52 Legacy 2	WS #1		x		x		х
3	MGX B52 Legacy 2	WS #1		x			х	х
4	MGX B52 Legacy 2	WS #1		x			x	x
		WS #1			x	No-Clean	No-Clean	x
5	MGX B52 Legacy 2	WS #1			x	x		х
6	MGX B52 Legacy 2	WS #1			x	x		х
7	MGX B52 Legacy 2	WS #1			x		х	x
8	MGX B52 Legacy 2	WS #1			x		x	x
			WS#2	x		No-Clean	No-Clean	x
1	MGX B52 Legacy 2		WS#2	x		x		х
2	MGX B52 Legacy 2		WS#2	x		x		х
3	MGX B52 Legacy 2		WS#2	x			х	x
4	MGX B52 Legacy 2		WS#2	x			x	x
			WS#2		x	No-Clean	No-Clean	х
5	MGX B52 Legacy 2		WS#2		x	x		х
6	MGX B52 Legacy 2		WS#2		x	x		х
7	MGX B52 Legacy 2		WS#2		x		x	x
8	MGX B52 Legacy 2		WS#2		x		x	x

Test Parameters

Print Parameter	Value
Print speed (mm/sec)	25 mm/sec
Blade length (mm)	305 mm
Print pressure (kg)	6.8 kg
Separation speed (mm/sec)	1 mm/sec
Separation distance (mm)	1 mm
Stencil thickness (µm)	100 microns
Stencil material	Stainless steel with nano- coating

Reflow Parameter	Ramp-to-Spike (RTS)	Ramp-Soak- Spike (RSS)
Time above 220 °C	57-59 sec	60-67 sec
Time between 150-200 °C	75-78 sec	104-112 sec
Peak temperature	241-244 °C	243-246 °C
Time 25 °C to peak temperature	4.4-4.6 min	5.4-5.5 min

Cleaning Parameter	Value
Cleaning process	In-line
Belt speed (m/min)	1.0 ft./minute
Wash temperature (°C)	60°C
Wash chemistry &	DI-Water & Eng. Aqueous
concentration (% vol)	diluted in DI-Water at 5%
Rinse temperature (°C)	54°C
Dry temperature (°C)	48°C

RESULTS: GENERAL PERFORMANCE

General Solder Paste Performance

- Current paste looses tack force over 24 hours
- New paste maintains tack over 48 hours

General Solder Paste Performance

 Current solder paste is slightly less hygroscopic than the new paste

General Solder Paste Performance

- Current solder paste is printable over 8 hours
- New solder paste is printable longer than 4 hours

PR Board V2 Performance

Current solder spreads farther on ENIG than the new paste Both wet ENIG & **OSP** acceptably

PR Board V2 Performance

Current solder paste tends to give high voiding New solder paste gives "ultra low voiding"

RESULTS: CLEANING & SIR PERFORMANCE

The current & new solder pastes fail SIR when not cleaned, as expected

The soak profile resulted in improved cleaning of the current solder paste

The new solder paste cleaned well after both reflow profiles

The new solder paste cleaned better than the current paste

Cleaning of the current solder paste was comparable with DI water & the engineered agent

Cleaning of the new solder paste was comparable with DI water & the engineered agent

Reliability of Flux Residues - Min SIR

Test #	Test Board	Solder Paste #1	Solder Paste #2	Solder Profile Ramp to Spike	Solder Profile Soak Profile	Inline - DI Water	Inline - Eng. Aq.	SIR [40°C/90% RH/ 5V / 168- Hours]	QFN-48 05 mm pitch	FCBA with a Center Lug 1.0 mm pitch	QFP-160 0.65 mm pitch	Net of Caps
		WS #1		x		No-Clean	No-Clean	х	6.00 Log ₁₀ Ω	7.06 Log ₁₀ Ω	7.34 Log ₁₀ Ω	6.93 Log ₁₀ Ω
1	MGX B52 Legacy 2	WS #1		x		х		x	8.49 Log ₁₀ Ω	9.42 Log ₁₀ Ω	$8.54 \ Log_{10} \Omega$	9.37 Log ₁₀ Ω
2	MGX B52 Legacy 2	WS #1		x		x		x	8.95 Log ₁₀ Ω	9.06 Log ₁₀ Ω	8.54 Log ₁₀ Ω	9.55 Log ₁₀ Ω
3	MGX B52 Legacy 2	WS #1		x			x	x	8.21 Log ₁₀ Ω	9.38 Log ₁₀ Ω	9.02 Log ₁₀ Ω	9.55 Log ₁₀ Ω
4	MGX B52 Legacy 2	WS #1		x			x	x	7.76 Log ₁₀ Ω	9.46 Log ₁₀ Ω	9.32 Log ₁₀ Ω	9.59 Log ₁₀ Ω
		WS #1			x	No-Clean	No-Clean	x	6.00 Log ₁₀ Ω	6.87 Log ₁₀ Ω	7.38 Log ₁₀ Ω	6.96 Log ₁₀ Ω
5	MGX B52 Legacy 2	WS #1			x	х		x	8.37 Log ₁₀ Ω	9.48 Log ₁₀ Ω	9.29 Log ₁₀ Ω	9.58 Log ₁₀ Ω
6	MGX B52 Legacy 2	WS #1			x	x		x	8.40 Log ₁₀ Ω	9.44 Log ₁₀ Ω	9.68 Log ₁₀ Ω	9.69 Log ₁₀ Ω
7	MGX B52 Legacy 2	WS #1			x		x	x	8.14 Log ₁₀ Ω	9.62 Log ₁₀ Ω	$8.78 \ Log_{10} \Omega$	9.62 Log ₁₀ Ω
8	MGX B52 Legacy 2	WS #1			x		x	x	8.07 Log ₁₀ Ω	9.55 Log ₁₀ Ω	8.76 Log ₁₀ Ω	$9.59 \ Log_{10} \Omega$
			W5#2	x		No-Clean	No-Clean	x	6.00 Log ₁₀ Ω	6.70 Log ₁₀ Ω	7.28 Log ₁₀ Ω	6.70 Log ₁₀ Ω
1	MGX B52 Legacy 2		W5#2	x		x		x	9.02 Log ₁₀ Ω	10.53 Log ₁₀ Ω	$10.30Log_{10}\Omega$	9.95 Log ₁₀ Ω
2	MGX B52 Legacy 2		WS#2	x		x		x	9.04 Log ₁₀ Ω	10.79 Log ₁₀ Ω	$10.00 \ \text{Log}_{10} \Omega$	9.87 Log ₁₀ Ω
3	MGX B52 Legacy 2		W5#2	x			x	x	9.13 Log ₁₀ Ω	10.06 Log ₁₀ Ω	$8.80 \ Log_{10} \Omega$	9.87 Log ₁₀ Ω
4	MGX B52 Legacy 2		WS#2	x			x	x	9.10 Log ₁₀ Ω	10.07 Log ₁₀ Ω	$9.31\text{Log}_{10}\Omega$	$9.87 Log_{10} \Omega$
			WS#2		x	No-Clean	No-Clean	x	6.27 Log ₁₀ Ω	6.57 Log ₁₀ Ω	7.17 Log ₁₀ Ω	6.65 Log ₁₀ Ω
5	MGX B52 Legacy 2		WS#2		x	х		x	9.04 Log ₁₀ Ω	10.82 Log ₁₀ Ω	$10.26 \ Log_{10} \Omega$	9.95 Log ₁₀ Ω
6	MGX B52 Legacy 2		W5#2		x	x		х	9.02 Log ₁₀ Ω	10.63 Log ₁₀ Ω	$10.27 \ Log_{10} \Omega$	9.91 Log ₁₀ Ω
7	MGX B52 Legacy 2		WS#2		x		x	х	9.04 Log ₁₀ Ω	9.84 Log ₁₀ Ω	8.83 Log ₁₀ Ω	9.75 Log ₁₀ Ω
8	MGX B52 Legacy 2		WS#2		x		x	х	9.06 Log ₁₀ Ω	9.76 Log ₁₀ Ω	8.84 Log ₁₀ Ω	9.81 Log ₁₀ Ω

The new solder paste has overall higher SIR

CONCLUSIONS & ACKNOWLEDGEMENTS

Conclusions

- The new solder paste improves tack time, and gives ultra-low voiding
- Water soluble (OA) solder paste residues cause reliability concerns
 - The new solder paste is easier to clean and more reliable than the current technology
 - Cleaning with the engineered agent was comparable to DI water, and enables cleaning in tight spaces

Acknowledgements

We thank Mark McMeen and STI for their assistance with this project.

Thank You!

Tony Lentz Mike Bixenman tlentz@fctassembly.com mbixenman@magnalytix.com

